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About me… 2

Dario Pasquini, PhD 
2nd year Postdoc at EPFL (but leaving soon)

More info at: 
https://pasquini-dario.github.io/me/

Security & Privacy [59%]

ML [40%]

GPGPU

HPC[1%]

✴ Password Security

✴ Sec. Crypto systems

✴Adversarial ML 
✴ S&P in CML

https://pasquini-dario.github.io/me/


Background: 
•A bit about Collaborative 

Machine Learning (CML). 

•CML is not a private. 

3



The problem we want to solve with CML: 4

!
A set of users/organizations (e.g., hospitals): 
• Everyone comes with some local data. 

• Not enough to train a ML model locally. 
• Not enough representative. 

Let’s collaborate! 
• Train a shared Machine Learning model (! ) 

using everyone's data.



The naive solution: “Centralized Learning” 5
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Why  parties can’t and should’t share their data 6

★Usually, valuable data is also sensitive: 
• e.g., text you write on your phone  

(google actually did it ). 

★Regulations  (e.g., GDPR, HIPAA):  
• E.g., Hospital’s data must not leave the hospital.

Ok, my wife is out



Here comes Collaborative Machine Learning 7

!
★Data stays local; data never leaves 

users’ devices "   
• Only proxy signals are shared 

among parties.



Here comes Collaborative Machine Learning 7

!
★Data stays local; data never leaves 

users’ devices "   
• Only proxy signals are shared 

among parties.

“That’s Privacy Preserving”



Federated Learning (FL)
8

Parameter Server:

Θt

since 2016; by google



FL & the community 9

from: https://federated.withgoogle.com/

http://www.apple.com
https://federated.withgoogle.com/


My weekly google scholar feed… 10



Federated Learning (FL) (FedSGD): 11

Θt

X2X1 X3

Θt Θt Θt∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

Θt+1 = Θt − μ
1
n

n

∑
i=1

∇(Xi, Θt)
Θt

X2X1 X3

Θt Θt Θt

Phase 1: Parameters distribution: Phase 2,3: Local training & model updates aggregation:

Parameters of the Machine Learning model (a neural network)

(i.e., partial derivative of a 
chosen loss function w.r.t each 
parameter of the network)



FL is private: 12

∇(X, Θ) ≠ X
“Model updates” (i.e., gradient from one or more SGD iterations) are not data: 

Real data remains safely stored on device and it is never shared.  
What can go wrong?



13“ CML is private”:



Wait, is FL private?
14

★Gradient is just a smooth function 
of the input data! 

★From a formal security 
perspective, sending data or 
gradient is the same thing: 

∇(X, Θ) ≈ X



Gradient inversion attack: 15

argminX′ : ∥ − ∇(X′ , Θt))∥2
2

• It can be seen as a second order optimization problem: 
• “Find synthetic data ( ) such that the gradient 

generated by  on  is similar to the one received 
from the client”: 

X′ 
X′ ΘtΘt

X2X1 X3

Θt Θt Θt

∇(X3, Θt)

#

∇(X3, Θt)
∇−1(∇( ,Θt)) ≈



Gradient inversion attack: 15

argminX′ : ∥ − ∇(X′ , Θt))∥2
2

• It can be seen as a second order optimization problem: 
• “Find synthetic data ( ) such that the gradient 

generated by  on  is similar to the one received 
from the client”: 

X′ 
X′ Θt

from: Geiping et al “Inverting Gradients - How easy is it to break privacy in federated learning?”, NeurIPS 2020

Θt

X2X1 X3

Θt Θt Θt

∇(X3, Θt)

#

∇(X3, Θt)
∇−1(∇( ,Θt)) ≈



Gradient inversion with a malicious server : 16

X2X1 X3

Θ̃t Θ̃t Θ̃t

Θ̃t

$

The server creates and distributes malicious parameters: 
• Just an intuition:  is forged in a such way that the gradient 

of the final linear layers “memorizes” the input data: 
Θ̃t

From: http://www.cleverhans.io/2022/04/17/fl-privacy.html

Arbitrarily chosen by the attacker!

http://www.cleverhans.io/2022/04/17/fl-privacy.html


17

Recovers exact copies of some of the data in the batch:



“FL is private”: 18

• Despite FL is believed to be a privacy 
preserving mechanism: 

• Vanilla FL does not offer any 
concrete form of protection. 



“FL is private”: 18

• Despite FL is believed to be a privacy 
preserving mechanism: 

• Vanilla FL does not offer any 
concrete form of protection. 

• “Let’s make it secure, then”: 
• Secure Aggregation.   
• Differential Privacy. 
• Protocols variations: 

• Peer-to-Peer Federated Learning.  
• Split Learning.



My research is about answering: 

Does this stuff  actually make CML 
more private?

19

[Spoiler Alert]



My research is about answering: 

Does this stuff  actually make CML 
more private?

19

[Spoiler Alert]

Typically, it doesn't!



Agenda: 20

• [ACM CCS’22] “Eluding Secure Aggregation in Federated Learning via 
Model Inconsistency” 

Dario Pasquini, Danilo Francati, Giuseppe Ateniese 
_ 

• [IEEE S&P’23] “On the (In)security of Peer-to-Peer Decentralized 
Machine Learning” 

Dario Pasquini, Mathilde Raynal, Carmela Troncoso 
_ 

• [ACM CCS’21] “Unleashing the tiger: Inference attacks on split learning” 
Dario Pasquini, Giuseppe Ateniese, Massimo Bernaschi 



Secure Aggregation (SA) in FL: 21

Parameter Server:

Θt

Θt Θt Θt∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

X2X1 X3

Magic, crypto box (SA):

Θt+1 = Θt − μ

 Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning”  CCS ’17  (>2100 citations in 5 years) 

$
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Secure Aggregation (SA) in FL: 21

Parameter Server:

Θt

Θt Θt Θt∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

X2X1 X3

Magic, crypto box (SA):
n

∑
i=1

∇(Xi, Θt)

Θt+1 = Θt − μ
n

∑
i=1

∇(Xi, Θt)

SA+FL expected privacy: 
% “Privacy by aggregation”:  

Aggregating together a suitable 
number of model updates smooths 
out the information carried out by 
individual contributions.  

 Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning”  CCS ’17  (>2100 citations in 5 years) 

$



The security of  Secure Aggregation: 
(adversarial server)

22

Θt

Θt Θt Θt

X2X1 X3

PKI

SA’s  Security definition: 
Nothing is learned about the inputs apart from 
what can be inferred from the final sum. 

% SA is proven secure against a malicious server: 
✦ that can collude with up to  users 

n
3 − 1

$

$

&

With the help of:

SA

 Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning”  CCS ’17  (>2100 citations in 5 years) 
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Is Secure Aggregation 
actually Secure?

Pasquini, Francati, and Ateniese“Eluding Secure Aggregation in 
Federated via Model Inconsistency” CCS’22

Θt



The problem with SA+FL: 24

n
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The problem with SA+FL: 24

n

∑
i=1

∇(Xi, Θt)

∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

$

Θt Θt Θt

SA: '



Gradient Suppression attack : 25

Θt,

Θ̃ Θ̃ Θt

X2X1 X3

$

Attack setup: 
1. The server selects a target user (all the other 

users are non-targets). 
2. The server distributes different parameters to 

target and non-targets 
• The target gets:  (as in the honest 

execution) 
• The non-targets get a set of maliciously 

crafted parameters   

Θt

Θ̃

Θ̃

Magic, crypto box (SA):

TargetNon-targetNon-target

Model 
inconsistency: 
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Gradient Suppression attack : 25

Θt,

Θ̃ Θ̃ Θt

X2X1 X3

$

Attack setup: 
1. The server selects a target user (all the other 

users are non-targets). 
2. The server distributes different parameters to 

target and non-targets 
• The target gets:  (as in the honest 

execution) 
• The non-targets get a set of maliciously 

crafted parameters   

Θt

Θ̃

Θ̃

Magic, crypto box (SA):

TargetNon-targetNon-target
 is created s.t.: Θ̃

∀X∈* ∇(X, Θ̃) = [0,…,0][0,…,0] ∇(X3, Θt)[0,…,0]

∇(X3, Θt)

∇(X3, Θt)[0,…,0] + [0,…,0]+

Model 
inconsistency: 



How to kill a neural net: 26

▪ The easiest way: 
• Choose  such that  is a constant function:Θ̃ "(#,  $~Θ(%))

 & ⊗ [0,0, 0 …,  0] = '   
is constant with respect to  

"(#,  ')
Θ̃

∀x,y∈X ∇(X, Θ̃) = [0,…,0]

[0,0, 0 …,  0]

=



Gradient suppression is: 27

▪ Attack properties: 
•It works even with millions of users (e.g., real-world cross-device FL) 
•It is task/network-agnostic (it would work for any NN/task) 
•It does not require any auxiliary information on users 

▪ However: 
•It is trivially detectable by aware non-target users  

•We introduce a more sophisticated attack called “Canary Gradient Attack”:



Partial Gradient Suppression: 28

 : Θ̃ξ

:∇(X, Θ̃ξ)
[0, …,  0]

|ξ |
| Θ̃ξ |

= 2
3,439,332

= 5 ⋅ 10−7%

e.g., ratio of zeroed gradients for a ResNet18:

ξ ⊂ Θ̃ξ

X

Idea: we forge  s.t. only a small subset of parameters  gets zero-gradient:Θ̃ξ ξ
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Canary-Gradient attack (setup): 29

·Θξ

Θ̃ξ Θ̃ξ
·Θξ

X2X1 X3

$

Attack setup: 
✦ The non-targets get ; that is, gradient for  is always 

zero. 

✦ The target gets ; that is, gradient for  can be either 
non-zero  or zero conditionally  to the input  
used to compute the gradient by the target.   
✦ E.g., Membership Inference Attack:  

Θ̃ξ ξ

·Θξ ξ
X

xt ∈ X ?

Θ̃ξ

TargetNon-targetNon-target

SA

:∇(X, ·Θξ)
xt
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·Θξ

Θ̃ξ Θ̃ξ
·Θξ

X2X1 X3

$

Attack setup: 
✦ The non-targets get ; that is, gradient for  is always 

zero. 

✦ The target gets ; that is, gradient for  can be either 
non-zero  or zero conditionally  to the input  
used to compute the gradient by the target.   
✦ E.g., Membership Inference Attack:  

Θ̃ξ ξ

·Θξ ξ
X

xt ∈ X ?

Θ̃ξ

TargetNon-targetNon-target

SA

:∇(X, ·Θξ)



MIAs via Canary-Gradient attack (aftermath): 30

$

Target: 
∇(X3,

·Θξ)

Non-target: 
∇(X2, Θ̃ξ)

Non-target: 
∇(X1, Θ̃ξ)

SA:

 
n

∑
i=1

∇i



MIAs via Canary-Gradient attack (aftermath): 30

$

Target: 
∇(X3,

·Θξ)

Non-target: 
∇(X2, Θ̃ξ)

Non-target: 
∇(X1, Θ̃ξ)

SA:

 
n

∑
i=1

∇i



MIAs via Canary-Gradient attack (aftermath): 30

$

Target: 
∇(X3,

·Θξ)

Non-target: 
∇(X2, Θ̃ξ)

Non-target: 
∇(X1, Θ̃ξ)

SA:

 
n

∑
i=1

∇i

The attacker recovers the exact  
gradient  for the target, then:)

→ xt ∈ X3

→ xt ∉ X3



MIAs via Canary-Gradient attack on FedSGD: 31

New state-of-the-art MIA in FL (malicious server) that works under SA: 
• Canary-Gradient injected in a ResNet18 
• Only 2 parameters for : 

• The scale and shift  parameters of  a single channel in a normalization layer 
• i.e.,  of the total parameters in the network 

)

5 ⋅ 10−7%

> 96 %



P2P Federated Learning

32



“Ok, it’s clear now; the problem is the server!” 33

We go fully-decentralized; Welcome to Decentralized Machine Learning:

$

Peer-to-Peer: Communication: 

Lalitha et al “Peer-to-peer Federated Learning on Graphs” 2019 
Guha Roy et al “BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learnig” 2019 

….. and many others ….
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“Ok, it’s clear now; the problem is the server!” 33

We go fully-decentralized; Welcome to Decentralized Machine Learning:

$

Peer-to-Peer: Communication: 

Lalitha et al “Peer-to-peer Federated Learning on Graphs” 2019 
Guha Roy et al “BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learnig” 2019 

….. and many others ….

[RelaySum for Decentralized Deep Learning on Heterogeneous Data, NeurIPS 2021]

[Decentralized Deep Learning With Arbitrary Communication Compression ICLR 2020] 

[Towards Decentralized Deep Learning with Differential Privacy CLOUD 2019]



Does decentralization 
make things better?

34

Pasquini, Raynal, and Troncoso“On the (In)security of Peer-to-Peer 
Decentralized Machine Learning” IEEE S&P’23

Θt
0

Θt
2

Θt
1

Θt
3

$



▪(We perform a thorough security (privacy, mainly) 
analysis of the protocol: 
▪ Both Semi-honest (# )  & Malicious security ($ ). 

           (we introduce 6 new attacks)

Is it the case? 35
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Local Generalization+ ,Adv. System Knowledge



Decentralized Learning: 36

Θt
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Θt
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Θt
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• Every user picks a set of neighbors users. 
• Then, every node simultaneously:



Note: Every node may have a different set of parameters.
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Θt
0

Θt
2

Θt
1

Θt
3

Θt+ 1
2

0 = Θt
0 − ∇(ξ, Θt

0)

• Every user picks a set of neighbors users. 
• Then, every node simultaneously:
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Θt
2

Θt
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Θt
3Θt+ 1

2
0

Θt+ 1
2

0

• Every user picks a set of neighbors users. 
• Then, every node simultaneously:

You can also see it as a “Gossip protocol”:
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0

Θt
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Θt
1

Θt
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Θt+ 1
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3
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2
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• Every user picks a set of neighbors users. 
• Then, every node simultaneously:

You can also see it as a “Gossip protocol”:
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Decentralized Learning: 36

Θt
0

Θt
2

Θt
1

Θt
3

• Every user picks a set of neighbors users. 
• Then, every node simultaneously:

You can also see it as a “Gossip protocol”:

Θt+ 1
2

0 +Θt+ 1
2

2 +Θt+ 1
2

3Θt+1
0

Update local parameters:

= ( )/3
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The Local Generalization phenomenon: 38

u1 u2 u3 u4

u1
u2

u3

u4

Federated Learning (FL): Decentralized Learning (DL):

▪ Every user shares the same model. ▪ Every user has different local parameters.



The Local Generalization phenomenon: 38

u1 u2 u3 u4

u1
u2

u3

u4

Federated Learning (FL): Decentralized Learning (DL):

▪ Every user shares the same model.

Θt

Θt

Θt Θt Θt

▪ Every user has different local parameters.



The Local Generalization phenomenon: 38

u1 u2 u3 u4

u1
u2

u3

u4

Federated Learning (FL): Decentralized Learning (DL):

Θt
1Θt

2

Θt
3

Θt
4

▪ Every user shares the same model.

Θt

Θt

Θt Θt Θt

▪ Every user has different local parameters.



▪Gossip communication induces uneven generalization:

Gossip communication and Generalization: 39
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Local Generalization: 40

u1 u2 u3 u4

Federated Learning (FL): Decentralized Learning (DL):

u1
u2

u3

u4

▪ Every node contributes equally to the 
global model.

▪ Nodes’ local models are dominated by 
their own local data.



Local Generalization: 40

u1 u2 u3 u4

Federated Learning (FL): Decentralized Learning (DL):

u1
u2

u3

u4

▪ Every node contributes equally to the 
global model.

▪ Nodes’ local models are dominated by 
their own local data.

$
$



Generalization is Privacy [MIA]: 41

Membership attack success:

u1 u2 u3 u4

u1
u2

u3

u4

-

-

▪ Attack on DL model update: 

▪ Attack on FL model update: 
(Global model) 

$

$
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Generalization is Privacy [MIA]: 41

Setup: Torus-36, CIFAR-100, ResNet-20 

Membership attack success:

u1 u2 u3 u4

u1
u2

u3

u4

-

-

▪ Attack on DL model update: 

▪ Attack on FL model update: 
(Global model) 
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Reducing Local Generalization: 42

u1

u2

u3

u4
▪ Dense topologies reduce local generalization.
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u2

u3

u4
▪ Dense topologies reduce local generalization.
▪ When the topology is fully-connected: 

▪ No more local generalization phenomenon! 
(DL becomes equivalent to FL) 



Reducing Local Generalization: 42

u1

u2

u3

u4
▪ Dense topologies reduce local generalization.
▪ When the topology is fully-connected: 

▪ No more local generalization phenomenon! 
(DL becomes equivalent to FL) 

▪ ⚖  However: 

▪  /  Efficiency: Every node is now a 
communication bottleneck. 

▪ 0  Security:  The attacker gains: “System 
knowledge”.
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Adversarial Knowledge:

▪ Every new neighbor grants the adversary with 
a new and different view of the state of the 
underlying system.

▪ This provides novel and unexpected  
capabilities to adversaries. Mainly: 
▪ Disentangle users’ contributions and 

artificially reduce generalization in the 
system.
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N(u) = u's neighbors 

▪ It achieves the same adversarial 
capabilities of  a parameter server in FL: 
▪1  Access individual gradients produced 

by the targets(s) [semi-honest]. 
▪✍  Decide the local parameters of the 

targets(s) [malicious]. 
 

▪ When the attacker is connected to all 
the target’s neighbors, i.e.,: 

N(u4) ⊆ N(u1)
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Opt. based gradient inversion (passive) [CIFAR10]:
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[1] Wen et al. “Fishing for user data in large-batch federated learning via gradient magnification” PMLR’22  
[2] Boenisch et al “When the curious abandon honesty: Federated learning is not private”  EuroS&P’23
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[2] Boenisch et al “When the curious abandon honesty: Federated learning is not private”  EuroS&P’23
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▪ Privacy offered by DL is a function of the 
underlying topology. However:

▪ Any configuration seems to provide only 
less privacy than FL.
▪ Every sparse topology induces local 

generalization. 
▪ Dense topologies allow the adversary 

to collect system knowledge and 
become as powerful as a parameter 
server in FL (what DL aimed to prevent).
▪ Multiple super-nodes can now 

exist simultaneously.

Summing Up: 52
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▪ Main problem with DL is that 
attackers can choose their 
neighbors. Could we enforce 
“secure topologies” without a 
super-node? 

Open problems:
53

▪ DL-aware Secure Aggregation 
protocols are needed (in the paper, we 
show that standard ones can be evaded).



Is there still time? 

•[Yes] talk about Split Learning; 

•[No] go to conclusions;

54
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Different ingredients, 
same result (a bit worse). 

Pasquini, Ateniese, and Bernaschi “Unleashing the Tiger: Inference 
Attacks on Split Learning” ACM CCS’21

Is Split Learning Private? No!
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▪ “CML is privacy preserving” has been mistakenly normalized by the scientific community: 
▪ Despite the huge interest and research throughput: 

▪ Current protocols are not a solution for your privacy issues. 

▪ Usually, trying to patch something inherently insecure does not bring anywhere.  
▪ Many existing techniques to improve CML’s privacy don't actually help. 

▪ The only suitable direction to solve CML is to embrace formal security definitions: 
▪ End-to-end cryptography (with sound threat models). 
▪ At worst,  weaker forms of privacy such as Differential Privacy (with sound threat models and met 

assumptions). 
▪ and accept that this comes with massive efficiency & utility costs.

▪ Everything outside this spectrum, unfortunately, offers only a “false sense of security”.



Time for questions.
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All images in the slides have been generated by DALL-E



Differential privacy.

70

What’s next?

Or better, incorrect applications of DP: 
• what happens when assumptions are not met.


