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=PFL- Aboutme... 2
Security & Privacy [59%]

[ 0% 7
* Password Security
Dario Pasquini, PhD ' % Adversarial ML
2nd year Postdoc at EPFL (but leaving soon) * S&P in CML
- * Sec. Crypto systems
More info at:
https://pasquini-dario.github.io/me/
HPC[1%]


https://pasquini-dario.github.io/me/

Background:

* A bitabout Collaborative
Machine Learning (CML).

e CML is nota private.




=PFL The problem we want to solve with CML: 4

A setofusers/organizations (e.g., hospitals):
* Everyone comes with some local data.
* Not enough to train a M. model locally.

’_lq
f‘, y * Notenough representative.

Let’s collaborate!

* Train a shared Machine Learning model (&)
using everyone’s data.
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2PFL The naive solution: “Centralized Learning™

Central entity:




2PFL The naive solution: “Centralized Learning™




2PFL Why parties can’tand should’tshare their data

% Usually, valuable data is also sensitive: :
* c.g., lextyou write on your phone e
(google actually did it ). '

% Regulations (e.g., GDPR, HIPAA):

* E.g., Hospital’s data must not leave the hospital.




=PFL Here comes Collaborative Machine Learning

Y Data stays local; data never leaves

ﬂ users’ devices /
* Only proxy signals are shared

among parties.
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=PFL Here comes Collaborative Machine Learning

Y Data stays local; data never leaves

users’ devices /
* Only proxy signals are shared
among parties.

“That’s Privacy Preserving”



Federated Learning (FL)

Parameter Server:

since 2016; by google




=2PFL KL & the community

Don't worry. I learned all about
a new approach that can handle
our privacy concerns and improve
functionality. It's called
federated leaming...

Federated
whatnow?

from:

It lets us do
machine learning
while keeping data
on-device.
It's resilient,
low-impact,

Whatever,
I'M SOLD!
I'll give you
a team of our
very best—



http://www.apple.com
https://federated.withgoogle.com/

PoF] Falkor: Federated Learning Secure Aggregation Powered by AES-CTR

GPU Implementation

MG Belorgey, S Dandjee, N Gama, D Jetchev...

We propose a novel protocol, Falkor, for secure aggregation for Federated Learning
in the multi-server scenario based on masking of local models via a stream cipher
based on AES in counter mode and accelerated by GPUs running on the ...

w O @ 0O

FedVAE: Communication-Efficient Federated Learning With Non-1ID Private

Data

H Yang, M Ge, K Xiang, X Bai, H Li - IEEE Systems Journal, 2023

Federated learning (FL), collaboratively training a shared global model without
exchanging and centralizing local data, provides a promising solution for privacy
preserving. On the other hand, it is faced with two main challenges: First, high ...

w O © 0

Local differentially private federated learning with homomorphic encryption
J Zhao, C Huang, W Wang, R Xie, R Dong, S Matwin - The Journal of ..., 2023

Federated learning (FL) is an emerging distributed machine learning paradigm

without revealing private local data for privacy-preserving. However, there are still

limitations. On one hand, user'privacy can be deduced from local outputs. On the ...

w O @ 6

PoF] FedDec: Peer-to-peer Aided Federated Learning

M Costantini, G Neglia, T Spyropoulos - arXiv preprint arXiv:2306.06715, 2023
Federated learning (FL) has enabled training machine leaming models exploiting
the data of multiple agents without compromising privacy. However, FL is known to
be vulnerable to data heterogeneity, partial device participation, and infrequent ...

w O ©®© 0

PDF] Personalized Graph Federated Learning with Differential Privacy
F Gauthier, VC Gogineni, S Werner, YF Huang, A Kuh - arXiv preprint arXiv ..., 2023
This paper presents a personalized graph federated leaming (PGFL) framework in
which distributedly connected servers and their respective edge devices

collaboratively learn device or cluster-specific models while maintaining the privacy ...

w O © 0

=PFL Myweekly google scholar feed. ..

Membership Inference Vulnerabilities in Peer-to-Peer Federated Learning
A Lugman, A Chattopadhyay, KY Lam - Proceedings of the 2023 Secure and ..., 2023
Federated learning is emerging as an efficient approach to exploit data silos that

form due to regulations about data sharing and usage, thereby leveraging distributed

resources to improve the learing of ML models. It is a fitting technology for cyber ...

v O O 0

PoF] G $” 2% uardFL: Safeguarding Federated Learning Against Backdoor
Attacks through Attributed Client Graph Clustering

H Yu, C Ma, M Liu, X Liu, Z Liu, M Ding - arXiv preprint arXiv:2306.04984, 2023

As a collaborative paradigm, Federated Learning (FL) empowers clients to engage in

collective model training without exchanging their respective local data.
Nevertheless, FL remains vulnerable to backdoor attacks in which an attacker ...

w O 0 0

IPoF] FedMLSecurity: A Benchmark for Attacks and Defenses in Federated
Learning and LLMs

S Han, B Buyukates, Z Hu, H Jin, W Jin, L Sun, X Wang... - arXiv preprint arXiv ..., 2023

This paper introduces FedMLSecurity, a benchmark that simulates adversarial

attacks and corresponding defense mechanisms in Federated Leaming (FL). As an

integral module of the open-sourced library FedML that facilitates FL algorithm ...

w O O 0

1poF] Mitigating Evasion Attacks in Federated Leaming-Based Signal Classifiers
S Wang, R Sahay, A Piaseczny, CG Brinton - arXiv preprint arXiv:2306.04872, 2023

There has been recent interest in leveraging federated learning (FL) for radio signal

classification tasks. In FL, model parameters are periodically communicated from

participating devices, which train on local datasets, to a central server which ...

w O ®© 0

Pelican Optimization Algorithm with federated learning driven attack detection
model in Internet of Things environment

FN Al-Wesabi, HA Mengash, R Marzouk, N Alruwais... - Future Generation ..., 2023

Abstract The Internet of Things (loT) is comprised of millions of physical devices

interconnected with the Internet through network that performs atask independently

10



=PfL Federated Learning (FL) (reascoy:

Phase 1: Parameters distribution:

Parameters of the Machine Learning model (a neural network)

Phase 2,3: Local training & model updates aggregation:

®t+1 —

lV(Xl,G)’ V(XZ,G)f) V(X3,®’)
1 .

= | =T
3
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PFL FL1s private:

“Model updates” (i.e., gradient from one or more SGD iterations) are not data:

V(X,0)#X

Real data remains safely stored on device and it is never shared.
What can go wrong?

12



=PFL % CMLis private™:

nature

Explore content v About the journal v  Publish withus v

13

naturemedicine

Explore content v  About the journal v  Publish with us v

nature > articles > article

Article | Open Access | Published: 26 May 2021

Swarm Learning for decentralized and confidential
clinical machine learning

Stefanie Warnat-Herresthal, Hartmut Schultze, Krishnaprasad Lingadahalli Shastry, Sathyanarayanan

Manamohan, Saikat Mukherjee, Vishesh Garg, Ravi Sarveswara, Kristian Handler, Peter Pickkers, N.

' = TLARTS

Ahmad Aziz, Sofia Ktena, Florian Tran, Michael Bitzer, Stephan Ossowski, Nicolas Casadei, Christian

Herr, Daniel Petersheim, Uta Behrends, Fabian Kern, Tobias Fehlmann, Philipp Schommers, Clara

Lehmann, Max Augustin, Jan Rybniker, COVID-19 Aachen Study (COVAS), Deutsche COVID-19 Omics

Initiative (DeCOl), ... Joachim L. Schultze &=  + Show authors

Nature 594, 265-270 (2021) | Cite this article
107k Accesses | 152 Citations | 472 Altmetric | Metrics

nature > nature medicine > articles > article

Article | Published: 19 January 2023

Federated learning for predicting histological
response to neoadjuvant chemotherapy in triple-
negative breast cancer

Jean Ogier du Terrail &, Armand Leopold, Clément Joly, Constance Béguier, Mathieu Andreux,

Charles Maussion, Benoit Schmauch, Eric W. Tramel, Etienne Bendjebbar, Mikhail Zaslavskiy, Gilles

Wainrib, Maud Milder, Julie Gervasoni, Julien Guerin, Thierry Durand, Alain Livartowski, Kelvin

Moutet, Clément Gautier, Inal Djafar, Anne-Laure Moisson, Camille Marini, Mathieu Galtier, Félix

Balazard, Rémy Dubois, ... Pierre-Etienne Heudel -+ Show authors

Nature Medicine 29, 135-146 (2023) | Cite this article
1803 Accesses |77 Altmetric | Metrics

===




Wait, is FL private?

% Gradient is just a smooth function
of the input data!

% From a formal security

perspective, sending data or
gradient is the same thing:

¥ VX.0)~ X



=PFL Gradientmversion attack:

* [Itcan be seen as a second order optimization problem:
* “Find synthetic data (X’) such that the gradient

generated by X’ on @' is similar to the one received

) from the client”:
vV N .0 ~ N

argminy : ||V (X;,0") — V(X/, @t))”%

V(X;, 0
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=PFL Gradientinversion attack:

* [Itcan be seen as a second order optimization problem:
* “Find synthetic data (X’) such that the gradient
generated by X" on @' is similar to the one received

from the client”:

@
vV .9 ~ ] .
argminy : ||V (X;,0") — V(X/, @t))”%

V (X5, 0

Original

EX
=

Extracted

from: Geiping et al “Inverting Gradients - How easy is it to break privacy in federated learning?”, NeurIPS 2020
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=PFL Gradientinversion with amalicious server :

Arbitrarily chosen by the attacker! The server creates and distributes malicious parameters:
* Justan intuition: @' is forged in a such way that the gradient
of the final linear layers “memorizes™ the input data:

— Output 3, = ReLU(w!x +b;)

=wix+b ifwix+b >0

7|
A n

Input Data
Point

x

Setup of propagatin:; a data point x through a fully-connected layer.

The reason why the data point x can be extracted from the gradients of the layer’s weight matrix at row i
can be explained by simply using the chain rule in the calculation of the gradients.

oL _ o M
N5 = & »

o _ o M
@ 537 = B T

In addition, for W/ x + b; > 0 we know: y; = W/ x + b;, and, S+ = 1, due to the derivative calculation.
”

So we can add this latter term to the previous equation (1) and obtain the following: gl—f = ‘)‘)‘—E ::VT' = ‘;‘—"
. L . e 0L _ 9L % _ 9L T
If we input > in the other equation (2), we end up with el o w o X

From: http://www.cleverhans.io/2022/04/17/fl-privacy.html

16


http://www.cleverhans.io/2022/04/17/fl-privacy.html

c=PrL

Recovers exact copies of some of the data in the batch:

il reardl
HENERNERER
AEEF=ENNEN
2 y
*ITLELFLFES
7
BEENRRZEN

(a) Reconstructed data points.
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(b) Original data points.
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=" “FLis private™:

* Despite FL is believed to be a privacy
preserving mechanism:
* Vanilla FL does not offer any
concrete form of protection.




=" “FLis private™:

* Despite FL is believed to be a privacy
preserving mechanism:
* Vanilla FL does not offer any
concrete form of protection.

e “Let’s makeitsecure, then™:
* Secure Aggregation.
* Dilfferential Privacy.
* Protocols variations:
* Peer-to-Peer Federated Learning.
* Split Learning.










=PFL Agenda:

e [ACM CCS’22] “FEluding Secure Aggregation in Federated Learning via
Model Inconsistency™
Dario Pasquini, Danilo Francati, Giuseppe Ateniese

. [IEEE S&P23] “On the (In)security of Peer-to-Peer Decentralized
Machine Learning™
Dario Pasquini, Mathilde Raynal, Carmela Troncoso

e [ACM CCS’21] “Unleashing the tiger: Inference attacks on splitlearning”™
Dario Pasquini, Giuseppe Ateniese, Massimo Bernaschi

20



2PFL Secure Aggregation (SA) in FL:

Parameter Server:

Bl

VX, 0" VX, 0" V(X;, 0
8 8 B
X X,

X;

Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS°17 (>2100 citations in 5 years)

21



2PFL Secure Aggregation (SA) in FL:

Parameter Server:

V(X;, 0

X X5 X;

Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS°17 (>2100 citations in 5 years)
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2PFL Secure Aggregation (SA) in FL:

V(X,, 0"

X

Parameter Server:

V(X,, 0"

zn: V (X, 0
i=1

v (&,4

X;

Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS°17 (>2100 citations in 5 years)

21



2PFL Secure Aggregation (SA) in FL:

Parameter Server:

zn: V (X, 0
i=1

SA+FL expected privacy:

9 “Privacy by aggregation™
Aggregating together a suitable
number of model updates smooths
out the information carried out by
individual contributions.

i

VX, 0" V(X,, 0" V(X;, 0

-

X,

Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS°17 (>2100 citations in 5 years)



=PFL The securlty of Secure Aggregation:

(adversarial server)

With the help of:

SA’s Security definition:
Nothing is learned about the inputs apart from
what can be inferred from the final sum.

4 that can collude with up to % — 1 users

3 SA is proven secure against a malicious server:

s

X;

Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS°17 (>2100 citations in 5 years)

22
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Is Secure Aggregation
actually Secure?

0 0 0

Pasquini, Francati, and Ateniese” £luding Secure Aggregation in
Federated via Model Inconsistency” CCS’ 22




PFL The problem with SA+FL:

V(X,0) V(X,0) V(X0

N7
- -5
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PFL The problem with SA+FL:

Zn

| T
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V(X,0) V(X,0) V(X0
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2PFL GradientSuppression attack :

Model
inconsistency:

Non-target
=

X5

Non-target
X

Attack setup:
1. The server selects a target user (all the other
users are non-targets).
2. The server distributes different parameters to
target and non-targets
o The target gets: ©' (as in the honest
execution)
* The non-targets get a set of maliciously
crafted parameters ©




2PFL GradientSuppression attack :

Model
inconsistency:

Non-target

Non-target
X

SIE =

|

ol

Attack setup:
1. The server selects a target user (all the other
users are non-targets).
2. The server distributes different parameters to
target and non-targets
o The target gets: ©' (as in the honest

execution)
* The non-targets get a set of maliciously
crafted parameters ©

O is created s.t.:

Vyex VX, 0) = [0,...,0]




2PFL GradientSuppression attack :

Model
inconsistency:

Non-target

Non-target

V(X;, 0

Target

...,0] V(X;, ©')

Attack setup:
1. The server selects a target user (all the other
users are non-targets).
2. The server distributes different parameters to
target and non-targets
o The target gets: ©' (as in the honest
execution)
* The non-targets get a set of maliciously
crafted parameters ©

O is created s.t.:

Vyex VX, 0) = [0,...,0]




=PFL. How to kill aneural net:

= The easiest way:

e Choose © such that L(y, f&(x)) is a constant function:

[0,0,0 ..., 0]
Il
> BRI RERGIR S RE REI RE R EIRE
ARG E R EEEREERE .
—>§>§b§->§->§->E‘->§~>§->§->§->§->?-h.; V V(X @)Z[O
2| 13| 12| 12 2] 1) 13] 2] 18] |2] 3] [ xyex ¥ 4

_\ t
£ [00,0...0=cmmp L(y, )

is constant with respect to ©



L=
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PFL Gradientsuppression s:

= Attack properties:
* [t works even with millions of users (e.g., real-world cross-device FL)
e [tis task/network-agnostic (it would work for any NN/task)
* [t does not require any auxiliary information on users

= However:
* [tis trivially detectable by aware non-target users

* We introduce a more sophisticated attack called “Canary Gradient Attack™:

27



2PFL Partial GradientSuppression:

Idea: we forge Q) ¢ 5.t only a small subset of parameters & gets zero-gradient:

3x3 conv, 512
3x3 cony, 512
avg pool

7x7 conv, 64, /2
3x3 conv, 256
3x3 conv, 256

=
~
-
n
>
&
8
m
>
-

e.g., ratio of zeroed gradients for a ResNet18:

2
L =5-107%
.., 0] 16, 3.439.332

: . . . D

--|-'-.-'- - - - - - .
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PFL Canary-Gradientattack (setup):

del inconsistency

B Fluding SA via mo

Non-target

O,
Xl

Non-target

29

SA

Target

=L

Attack setup:

4 The non-targets get © s thatis, gradient for £ is always
zero.




del inconsi

B Fluding SA via mo

Canary-Gradientattack (setup):

Non-target

O,
Xl

Non-target

=

29

SA

Target

=L

Attack setup:

4 The non-targets get © s thatis, gradient for £ is always
zero.

4 The targetgets ® & thatis, gradient for & can be either

non-zero & or zero ¢ conditionally to the input X
used to compute the gradientby the target.
4+ E.g., Membership Inference Attack: x, € X?
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del inconsi

B Fluding SA via mo

Canary-Gradientattack (setup):

Non-target

O,
Xl

Non-target

T 7T

LT

(CALALAY

29

Attack setup:

4 The non-targets get © s thatis, gradientfor £ is always
zero.

4 The targetgets ® & thatis, gradient for & can be either

non-zero & or zero ¢ conditionally to the input X
used to compute the gradientby the target.
4+ E.g., Membership Inference Attack: x, € X?

V(X,0,):
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rdel inconsi

B Fluding SA via m

Canary-Gradientattack (setup):

Non-target

O,
Xl

Non-target

T 7T

LT

(CALALAY

29

Attack setup:

4 The non-targets get © s thatis, gradientfor £ is always
zero.

4 The targetgets ® & thatis, gradient for & can be either

non-zero & or zero ¢ conditionally to the input X
used to compute the gradientby the target.
4+ E.g., Membership Inference Attack: x, € X?

V(X,0,):




2PFL. MIAs via Canary-Gradientattack (aftermath):

Target:
V(X;,0 5)

Non-target:

V(X,, 6,

Non-target:

V(X1.0,)

SA:

30



2PFL. MIAs via Canary-Gradientattack (aftermath):

Target:
V(X;,0 5)

Non-target:

V(X,, 6,

Non-target:

V(X1.0,)

SA:

30



2PFL. MIAs via Canary-Gradientattack (aftermath):

SA:

Target:
V(X3,0;)
The attacker recovers the exact

gradient & for the target, then:

N()n—target: '\Q’- — 'xl‘ S X3

V(X 0,) ‘X
— X

@ X

Non—target:
\Y (X] s ®§)




=PFL- MIAs via Canary-Gradientattack on FedSGD:

New state-of-the-art MIA in FL (malicious server) that works under SA:

* Canary-Gradient injected in a ResNet18
*  Only 2 parameters for ¢&:
* The scale and shift parameters of a single channel in a normalization layer
e i.e.,5-1077% of the total parameters in the network

—a— CIFAR-10 « CIFAR-100 —%¥— tinylmagenet « CIFAR-10 CIFAR-100 « tinylmagenet
—&— CIFAR-100 « CIFAR-10  —s— CIFAR-10 « tinylmagenet = — tinylmagenet « CIFAR-100

1.00 A
0.99 ~
0.98 A
0.97 A

0.96 - > 96 %

0.95 T T T T T
32 64 128 256 512

= Batch size

MIA accuracy




P2P Federated Learning
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2PEL 0k, 1t’s clear now; the problem is the server

We go fully-decentralized; Welcome to Decentralized Machine Learning:

Peer-to-Peer: Communication:

Lalitha et al “Peer-to-peer Federated Learning on Graphs” 2019
Guha Roy et al “BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learnig” 2019
..... and many others ....
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2PEL 0k, 1t’s clear now; the problem is the server

We go fully-decentralized; Welcome to Decentralized Machine Learning:

Peer-to-Peer: Communication:

Lalitha et al “Peer-to-peer Federated Learning on Graphs” 2019
Guha Roy et al “BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learnig” 2019
..... and many others ....



Decentralized learning offers strong promise for new applications, allowing any group of agents to

collaboratively train a model while respecting the data locality and privacy of each contributor [25].

At the same time, it removes the single point of failure in centralized systems such as in federated

learning [12], improving robustness, security, and privacy. Even from a pure efficiency standpoint,
[RelaySum for Decentralized Deep Learning on Heterogeneous Data, NeurIPS 2021]

A —— e L

Additionally, this fully decentralized setting is also strongly motivated by privacy aspects, enabling to

keep the training data private on each device at all times.
[Decentralized Deep Learning With Arbitrary Communication Compression [CLR 2020]

systems have not been fully explored. Decentralized systems have great potentials
in the future practical use as they have multiple useful attributes such as less
vulnerable to privacy and security issues, better scalability, and less prone to single
point of bottleneck and failure. In this paper. we focus on decentralized learning

[Towards Decentralized Deep Learning with Differential Privacy CLOUD 2019]
T — e ——




34

Does decentralization

make things better?

Pasquini, Raynal, and Troncoso® On the (In)security of Peer-to-Peer
Decentralized Machine Learning” IEEE S&P°2.3




=PFL [s1tthe case?

« QWe perform a thorough security (privacy, mainly)
analysis of the protocol:

= Both Semi-honest (&9) & Malicious security (&).

(we introduce 6 new attacks)

35



=PFL [s1tthe case?

« QWe perform a thorough security (privacy, mainly)
analysis of the protocol:

= Both Semi-honest (&9) & Malicious security (&).

(we introduce 6 new attacks)

= /L. No! DL protocols inherently boost adversaries’
capabilities, resulting in less privacy for the users.
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(we introduce 6 new attacks)
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« & We characterize the main factors responsible for DL
Insecurity:
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=PFL IS 1t the case?

« QWe perform a thorough security (privacy, mainly)
analysis of the protocol:

= Both Semi-honest (&9) & Malicious security (&).

(we introduce 6 new attacks)

= /L. No! DL protocols inherently boost adversaries’
capabilities, resulting in less privacy for the users.

« & We characterize the main factors responsible for DL
Insecurity:

Local Generalization™. /‘Adv. System Knowledge

35



=PFL Decentrahized Learning:

* Everyuser picks aset of neighbors users.
* Then, everynode simultaneously:

36



=PFL Decentrahized Learning:

* Everyuser picks aset of neighbors users.
* Then, everynode simultaneously:

1 fort €[0,1,...]do
/* Local optimization step

2 | &~ X
t+3 _ ot t Ot
3 ev - 9'u - nvefj (§v> ev)’
/* Communication with neighbors
4 for u € N(v)/{v} do
1
5 send (-)f,+2 to u;
. t+3
receive ©, 2 from u;
end
/* Model updates aggregation
t41 _ 1 t+3,
8 e‘u - |FI(‘U)| ueﬁ(v) u ’
9 end

Note: Every node may have a different set of parameters.



=PFL Decentrahized Learning:

* Everyuser picks aset of neighbors users.
* Then, everynode simultaneously:
1 fort€[0,1,...]do

/* Local optimization step
2 gv ~ Xv’

*3 oltz — et — Vet (€4, 0%);

/ * Communication with neighbors

4 for u € N(v)/{v} do ®t+%
5 send GU 3 to u; 0
1
receive 9u+2 from u;
end
/* Model updates aggregation
. ot+l _ t+3,

|N(U)| uEl%(v) o

9 end

Note: Every node may have a different set of parameters.

36



=PFL Decentrahized Learning:

* Everyuser picks aset of neighbors users.
* Then, everynode simultaneously:

1 fort €[0,1,...]do
/* Local optimization step
2 gv ~ Xv’

s | etfi—et — Vet (€4, 0%);

/ * Communication with neighbors
4 for u € N(v)/{v} do

*5 end@v 2tou
1
6
7

receive 9u+2 from u;

end

/* Model updates aggregation
ot+l _ t+3,

s |N(U)| uEl%(v) o

9 end

Note: Every node may have a different set of parameters.

You can also see itas a “Gossip protocol:
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=PFL Decentrahized Learning:

You can also see itas a “Gossip protocol:

* Everyuser picks aset of neighbors users.
* Then, everynode simultaneously:

1 fort €[0,1,...] do
/* Local optimization step
2 | &~ X

t+3 _ ot t ot
3 ©., =0y — nveg (€5, 65%);
/* Communication with neighbors
4 for u € N(v)/{v} do

1

t+
5 send O, 2% tow;
1

o attd
*6 receive ©, 2 from u;
7 end

/* Model updates aggregation

1
ettl = 1 > Z+§;
|N(U)| ueN(v)

8

9 end

Note: Every node may have a different set of parameters.
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=PFL Decentrahized Learning:

You can also see itas a “Gossip protocol:

* Everyuser picks aset of neighbors users.
* Then, everynode simultaneously:

1 fort €[0,1,...]do
/* Local optimization step

2 & ~ Xo;
t+3 t t ot
3 ©., =0y — nveg (€5, 65%);
/* Communication with neighbors
4 for u € N(v)/{v} do
il
5 send 9U+2 to u;
. t+3
receive O, from u;
end

/* Model updates aggregation

1
' s ettt — 1 y e.f2.
|N(U)| ueN(v)
9 end Update local parameters:

1 1 1
t++ t++ +5
Note: Every node may have a different set of parameters. ®6+1 = ( ® O+ 24 @2 2+ ®3 : )/ 3
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=PFL The Local Generalization phenomenon:

Federated Learning (FL): Decentralized Learning (DL):

= Every user shares the same model. = Every user has different local parameters.

u
/
Uz

]
/
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=PFL The Local Generalization phenomenon:

Federated Learning (FL): Decentralized Learning (DL):

= Every user shares the same model. = Every user has different local parameters.
O}
CAL -
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\
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PFL - Gossip communication and Generalization:

= Gossip communication induces uneven generalization:
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=PFL [ ocal Generalization:

Federated Learning (FL):

= Every node contributes equally to the
global model.

-
AR

40

Decentralized Learning (DL):

= Nodes’ local models are dominated by
their own local data.

o
3 /
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=PFL [ ocal Generalization:

Federated Learning (FL):

= Every node contributes equally to the
global model.

-

Decentralized Learning (DL):

= Nodes’ local models are dominated by
their own local data.

\

»,
| 4

v @
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PFL (Generalizatonis Privacy [MIA

= Attack on DL model update:

i
/

L4

= Attack on FL. model update:
(Global model)

i A
10 ey O

L/
W

Membership attack success:

41
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PFL (Generalizatonis Privacy [MIA

= Attack on DL model update:

Membership attack success:

—
)
|
(o))

i
/

0.07 1
S
\ ] >, 006
/ O
y © © 0.04 1
d) =
=
5 0.031
S
‘® 0.02 -
= Attack on FL. model update: £
(Global model) 2 0.01 -
0.00

L L L
NoWwow
U o U1 o

- 2.0

T
[uy
(6]

Consensus

1.0 §

T T
© ©
o v

-
AR
) O bl

0.02 0.03
Generalization error

0.01

Setup: Torus-36, CIFAR-100, ResNet-20

distance (C)

Higher means less privacy

41
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PFL Reducing Local Generalization:

= Dense topologies reduce local generalization.
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_ ‘ ’| = Dense topologies reduce local generalization.
/ '

S
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PFL Reducing Local Generalization:

= Dense topologies reduce local generalization.

/ " = When the topology is fully-connected:
2

= No more local generalization phenomenon!
(DL becomes equivalent to FL.)
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PFL Reducing Local Generalization:

= Dense topologies reduce local generalization.

/ " = When the topology is fully-connected:
2

= No more local generalization phenomenon!
(DL becomes equivalent to FL.)

o é}l& However:
= (8 Efficiency: Every node is now a

- / communication bottleneck.
= & Security: The attacker gains: “System

knowledge™.

42
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" Adversarial “System-Knowledge™ :

= Every new neighbor grants the adversary with
a new and different view of the state of the
underlying system.
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= ®t2+ = Every new neighbor grants the adversary with
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" Adversarial “System-Knowledge™ :

Adversarial Knowledge:
+1/2 : :
= S = Every new neighbor grants the adversary with
. E+1/2 a new and different view of the state of the
3 .
y / o o underlying system.
2 @4
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™ Adversarial “System-Knowledge” :

Adversarial Knowledge:

172
= ®t2+ = Every new neighbor grants the adversary with

i} @!+1/2 a new and differentview of the state of the
3 .
/ o ey underlying system.
4 = This provides novel and unexpected
capabilities to adversaries. Mainly:

= Disentangle users’ contributions and
= artificially reduce generalization in the

e,
/



PFL The Funcuonal Marginalization attack:

Locally, attacker-side:
\
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PFL The Funcuonal Marginalization attack:

Locally, attacker-side:

05
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PFL The Funcuonal Marginalization attack:

Locally, attacker-side:
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PFL The Funcuonal Marginalization attack:

Locally, attacker-side:

- : o o
\ _ ~
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=PFL- MIAs on Functionally Marginalized models:: ’

Functionally Marginalized model:

us

uz

0T + O + 01

2

O =4.(@F7 -
4 4

0.07 A

Normalized MIA accuracy (M)

0.00 A

0.06 A

0.05 A

0.04 -

0.03 A

0.02 A

0.01 A

0.00 0.01 0.02 0.03 0.04
Generalization error

Torus-36, CIFAR-100, ResNet-20



=PFL- MIAs on Functionally Marginalized models:: ’

Functionally Marginalized model:

0.07 1

us 0.06 -

uz

0.05 -
uy 0.04 1
0.03

0.00 - T T T T T
0.00 0.01 0.02 0.03 0.04

1 1 1 Generalization error
++ ++ ++
O + Oz + O
1 2 3

4 Torus-36, CIFAR-100, ResNet-20

g
o
N

Normalized MIA accuracy (M)

[o]
o
o
[
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PFL The realimphications of “*System Knowledge™:

= When the attacker is connected to all

the target’s neighbors, i.c..: _
N(u) € N(uy)

VY

g

N(u) = u’s neighbors




2PFL Thereal imphcations of ““System Knowledge™:

= When the attacker is connected to all
the target’s neighbors, i.c..:

N(uy) € N(wy)

= Itachieves the same adversarial
capabilities of a parameter server in FL:

= 22) Access individual gradients produced
by the targets(s) [semi-honest]. -

= £ Decide the local parameters of the
targets(s) [malicious].

N(u) = u’s neighbors

o

46
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A decentralized user A becomes equivalent to a parameter server in FL for every node V's.t.:

N(V) € N(A)

° —=
~
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- (N(-) : setof neighbors)
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A decentralized user A becomes equivalent to a parameter server in FL for every node V's.t.:

N(V) € N(A)

° =
\\

- . .\\'\\. a )
y \.\

- (N(-) : setof neighbors)
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Recover target(s)’ gradient:

= Gradientrecoveryee):

f+ 2 = The attacker can retrieve the gradient of the

target(s) by observing two consecutive rounds:

t+2

48



r|1

..

Recover target(s)’ gradient:

= Gradientrecoveryee):

f+ 2 = The attacker can retrieve the gradient of the

target(s) by observing two consecutive rounds:

t+2
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PFL Recover target(s)’ gradient:

= Gradientrecoveryee):

48

= The attacker can retrieve the gradient of the
target(s) by observing two consecutive rounds:

—(®"7 —
n 4

i
740
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PFL Recover target(s)’ gradient:

= Gradientrecoveryee):
e’ + 2 = The attacker can retrieve the gradient of the
target(s) by observing two consecutive rounds:
t+ >
2 | 1 @7T4+0T+05T 407 t
;(@ij_ 1 2 ; 3 4 —V@r(x )

Opt. based gradientinversion (passive) [CIFAR10]: l
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=PFL Deciding target(s)’ local parameters:

= State override attack 24:

_ t+ 2 !i = The attacker sets the target(s)’ parameters to a chosen
payload &% by.

1. Waiting for neighbors model updates.
t+— f + 2 2. Creating an adversarial model update:

l/@f
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L Deciding target(s)’ local parameters:

= State override attack 24:

U = The attacker sets the target(s)’ parameters to a chosen
payload &% by.
1. Waiting for neighbors model updates.

2. Creating an adversarial model update:

t++ t++ t++
— @+ 0+ 0+

I/@*
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L Deciding target(s)’ local parameters:

= State override attack 24:

u = The attacker sets the target(s)’ parameters to a chosen
payload &% by.
1. Waiting for neighbors model updates.

2. Creating an adversarial model update:

=~ t++ t++ t++ A
l/ @__(@u22+@u32+@u42)+';%
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L Deciding target(s)’ local parameters:

= State override attack 24:

_ !i = The attacker sets the target(s)’ parameters to a chosen
payload &% by.

M
Z+2

” 1. Waiting for neighbors model updates.
,\\ 2. Creating an adversarial model update:
) ~ t++ t++ t++ )
+ &=— (O +07 +0 )+ §

N
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L Deciding target(s)’ local parameters:

= State override attack 24:

_ i = The attacker sets the target(s)’ parameters to a chosen
payload &% by.
1. Waiting for neighbors model updates.

2. Creating an adversarial model update:

/ O |0=-@F+0iT 0l @
cp
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L Deciding target(s)’ local parameters:

= State override attack 24:

_ i = The attacker sets the target(s)’ parameters to a chosen
payload &% by.
1. Waiting for neighbors model updates.

2. Creating an adversarial model update:

 Sllerg [o-tEiieiiied. &

@ = Payload (@) trap weights [1, 2]

[1] Wen et al. “Fishing for user data in large-batch federated learning via gradient magnification” PMLR’22
[2] Boenisch et al “When the curious abandon honesty: Federated learning is not private” EuroS&P’23
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L Deciding target(s)’ local parameters:

= State override attack 24:

] i = The attacker sets the target(s)’ parameters to a chosen

payload &% by.
1. Waiting for neighbors model updates.
\ 2. Creating an adversarial model update:
~ L L 1+
_ / O =g |0=-©+6 +ou)+
@% = Payload (@) trap weights [ 1, 2]

STL10]:

=

Verbatim copies of some of the batch data [
e N

[1] Wen et al. “Fishing for user data in large-batch federated learning via gradient magnification” PMLR’22
[2] Boenisch et al “When the curious abandon honesty: Federated learning is not private” EuroS&P’23



=PFL Decentralizaton; the aftermath:

* A decentralized user can be as powerful as a federated server, but:

(a) In FL, there is a single and well-defined server: (b) In DL, we have multiple, equivalently powerful,
(anonymous) users:
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* A decentralized user can be as powerful as a federated server, but:

(a) In FL, there is a single and well-defined server: (b) In DL, we have multiple, equivalently powerful,
(anonymous) users:
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Summing Up:

= Privacy offered by DL is a function of the
underlying topology. However:

= Any configuration seems to provide only
less privacy than FL.

= Every sparse topology induces local
generalization.

= Dense topologies allow the adversary
to collect system knowledge and
become as powerful as a parameter
server in FL (what DL aimed to prevent).

= Multiple super-nodes can now
exist simultaneously.



o Open problems:
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= Main problem with DL is that
attackers can choose their
neighbors. Could we enforce
“secure topologies” without a
super-node?




o Open problems:

= Main problem with DL is that
attackers can choose their
neighbors. Could we enforce
“secure topologies” without a
super-node?

= DL-aware Secure Aggregation

protocols are needed (in the paper, we
show that standard ones can be evaded).




Is there sull ume?
* [Yes] talk about Split Learning;

* [No] go to conclusions;



Diflerentingredients,
same result (a bit worse).

Is Split Learning Private? No!

Pasquini, Ateniese, and Bernaschi “ Unleashing the Tiger: Inference
Auacks on Split Learning” ACM CCS’21
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=PFL SphitLearning

Clients-side: Server-side:

l
l
I
I
l
I
l
I
]
I
I
l
d

‘Smashed data:’

f(x)

Private
Training-set:

L(F(x),y)

LLLD

The complete network: [ (X) = S(f (x))

Forward pass: Neural net:

—_—
Backward pass: -
é —_— —_— —_—

Gupta and Raskar “Distributed learning of deep neural network over multiple agents” 2018



=PFL. Split Learning is private ‘cause:

Clients-side: Server-side:

[
Private [ ‘Smashed data’
Training-set: J

@ f(x)

The privacy-preserving property of Split Learning hinges on.:
1. The server does not observe the raw data; only the smashed data f(x).

2. Smashed data, per se, do not leak information about the raw data.

3. The server cannot invert the smashed data because it does not know the
function f.



=PFL The problem with Split Learning:

Clients-side: Server-side:

‘Smashed data’

v
f(x)

Training-set:

=

[
Private |
I
1

_— L} _— — _— _— j
! v
[]

Neural net:

L]

Forward pass:
—

[ The server controls client’s learning process.

* The server can just “train” f to leak information about x
Backward pass:



=PFL The feature-space hijacking attack:

Clients-side:

Private
Training-set:

_—-_—--—_—_1

Server-side:

Discriminator

A

+

Smashed data

@ﬂ‘

T T A

Neural net: Autoencoding loss:

:] Adversarial losses:

Forward pass:
—p

Backward pass:

Lgncpec = MSE(Xpu:

D

Autoencoder (exs)
Public
Tl‘ail‘ling—set: .‘IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII..
» -
- -
] Xpu = .
. - .
. Ll
..IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘.
Dec(Enc(Xpy)))
Lp =log(1— D (Enc(X,, \]] + log(D(f (X,r)))
A
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=PL The feature-space hijjacking attack: ’

Clients-side: Server-side:
e T TETm T T T T T T aimimater

Training-set:

I X -— - - L ——————————— I
pr
, |
' |
Public

I ITI‘ainillg-set; :‘IIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII.“ I

I \ Xpu : E I

I ———————————— : . E I
I ‘..llllllllllllllllllllllllllllllllllllllllllllll‘.. I

Neural net: Autoencoding loss: :

:] Adversarial losses: L, = log(1 - D(f(X,,))) Lp =log (1 -D (E"C(Xpr))) + 1og(D(f (Xpr)))

Forward pass:
—

Let’s force f to man its innut in the feature-snace defined hv Enc

Backward pass:
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=PrL

Clients-side:
r e T

Training-set:

Server-side:
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(a) MNIST.
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(b) Fashion-MNIST.
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PFL What we should have learned: §

= “CMLis privacy preserving™ has been mistakenly normalized by the scientific community:
= Despite the huge interest and research throughput:

= Current protocols are not a solution for your privacy issues.

= Usually, trying to patch something inherently insecure does not bring anywhere.
= Many existing techniques to improve CML’s privacy don’t actually help.

= The only suitable direction to solve CML is to embrace formal security definitions:
= End-to-end cryptography (with sound threat models).

= Atworst, weaker forms of privacy such as Differential Privacy (with sound threat models and met
assumptions).

= and accept that this comes with massive efficiency & utility costs.

= = Everything outside this spectrum, unfortunately, offers only a “false sense of security™.
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Time for questions.

All images in the slides have been generated by

© DALLE




What’s next?

Diferental privacy.

Or better, incorrect applications of DP:
» what happens when assumptions are not met.



