
Privacy Preserving
Collaborative

Machine Learning
Dario Pasquini

Privacy Preserving
Collaborative

Machine Learning
Dario Pasquini

?

About me… 2

Dario Pasquini, PhD
2nd year Postdoc at EPFL (but leaving soon)

More info at:
https://pasquini-dario.github.io/me/

Security & Privacy [59%]

ML [40%]

GPGPU

HPC[1%]

✴ Password Security

✴ Sec. Crypto systems

✴Adversarial ML
✴ S&P in CML

https://pasquini-dario.github.io/me/

Background:
•A bit about Collaborative

Machine Learning (CML).

•CML is not a private.

3

The problem we want to solve with CML: 4

!
A set of users/organizations (e.g., hospitals):
• Everyone comes with some local data.

• Not enough to train a ML model locally.
• Not enough representative.

Let’s collaborate!
• Train a shared Machine Learning model (!)

using everyone's data.

The naive solution: “Centralized Learning” 5

Central entity:

The naive solution: “Centralized Learning” 5

!

Central entity:

The naive solution: “Centralized Learning” 5

!

Central entity:

Why parties can’t and should’t share their data 6

★Usually, valuable data is also sensitive:
• e.g., text you write on your phone

(google actually did it).

★Regulations (e.g., GDPR, HIPAA):
• E.g., Hospital’s data must not leave the hospital.

Ok, my wife is out

Here comes Collaborative Machine Learning 7

!
★Data stays local; data never leaves

users’ devices "
• Only proxy signals are shared

among parties.

Here comes Collaborative Machine Learning 7

!
★Data stays local; data never leaves

users’ devices "
• Only proxy signals are shared

among parties.

“That’s Privacy Preserving”

Federated Learning (FL)
8

Parameter Server:

Θt

since 2016; by google

FL & the community 9

from: https://federated.withgoogle.com/

http://www.apple.com
https://federated.withgoogle.com/

My weekly google scholar feed… 10

Federated Learning (FL) (FedSGD): 11

Θt

X2X1 X3

Θt Θt Θt∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

Θt+1 = Θt − μ
1
n

n

∑
i=1

∇(Xi, Θt)
Θt

X2X1 X3

Θt Θt Θt

Phase 1: Parameters distribution: Phase 2,3: Local training & model updates aggregation:

Parameters of the Machine Learning model (a neural network)

(i.e., partial derivative of a
chosen loss function w.r.t each
parameter of the network)

FL is private: 12

∇(X, Θ) ≠ X
“Model updates” (i.e., gradient from one or more SGD iterations) are not data:

Real data remains safely stored on device and it is never shared.
What can go wrong?

13“ CML is private”:

Wait, is FL private?
14

★Gradient is just a smooth function
of the input data!

★From a formal security
perspective, sending data or
gradient is the same thing:

∇(X, Θ) ≈ X

Gradient inversion attack: 15

argminX′ : ∥ − ∇(X′ , Θt))∥2
2

• It can be seen as a second order optimization problem:
• “Find synthetic data () such that the gradient

generated by on is similar to the one received
from the client”:

X′
X′ ΘtΘt

X2X1 X3

Θt Θt Θt

∇(X3, Θt)

#

∇(X3, Θt)
∇−1(∇(,Θt)) ≈

Gradient inversion attack: 15

argminX′ : ∥ − ∇(X′ , Θt))∥2
2

• It can be seen as a second order optimization problem:
• “Find synthetic data () such that the gradient

generated by on is similar to the one received
from the client”:

X′
X′ Θt

from: Geiping et al “Inverting Gradients - How easy is it to break privacy in federated learning?”, NeurIPS 2020

Θt

X2X1 X3

Θt Θt Θt

∇(X3, Θt)

#

∇(X3, Θt)
∇−1(∇(,Θt)) ≈

Gradient inversion with a malicious server : 16

X2X1 X3

Θ̃t Θ̃t Θ̃t

Θ̃t

$

The server creates and distributes malicious parameters:
• Just an intuition: is forged in a such way that the gradient

of the final linear layers “memorizes” the input data:
Θ̃t

From: http://www.cleverhans.io/2022/04/17/fl-privacy.html

Arbitrarily chosen by the attacker!

http://www.cleverhans.io/2022/04/17/fl-privacy.html

17

Recovers exact copies of some of the data in the batch:

“FL is private”: 18

• Despite FL is believed to be a privacy
preserving mechanism:

• Vanilla FL does not offer any
concrete form of protection.

“FL is private”: 18

• Despite FL is believed to be a privacy
preserving mechanism:

• Vanilla FL does not offer any
concrete form of protection.

• “Let’s make it secure, then”:
• Secure Aggregation.
• Differential Privacy.
• Protocols variations:

• Peer-to-Peer Federated Learning.
• Split Learning.

My research is about answering:

Does this stuff actually make CML
more private?

19

[Spoiler Alert]

My research is about answering:

Does this stuff actually make CML
more private?

19

[Spoiler Alert]

Typically, it doesn't!

Agenda: 20

• [ACM CCS’22] “Eluding Secure Aggregation in Federated Learning via
Model Inconsistency”

Dario Pasquini, Danilo Francati, Giuseppe Ateniese
_

• [IEEE S&P’23] “On the (In)security of Peer-to-Peer Decentralized
Machine Learning”

Dario Pasquini, Mathilde Raynal, Carmela Troncoso
_

• [ACM CCS’21] “Unleashing the tiger: Inference attacks on split learning”
Dario Pasquini, Giuseppe Ateniese, Massimo Bernaschi

Secure Aggregation (SA) in FL: 21

Parameter Server:

Θt

Θt Θt Θt∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

X2X1 X3

Magic, crypto box (SA):

Θt+1 = Θt − μ

 Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS ’17 (>2100 citations in 5 years)

$

Secure Aggregation (SA) in FL: 21

Parameter Server:

Θt

Θt Θt Θt∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

X2X1 X3

Magic, crypto box (SA):
n

∑
i=1

∇(Xi, Θt)

Θt+1 = Θt − μ

 Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS ’17 (>2100 citations in 5 years)

$

Secure Aggregation (SA) in FL: 21

Parameter Server:

Θt

Θt Θt Θt∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

X2X1 X3

Magic, crypto box (SA):
n

∑
i=1

∇(Xi, Θt)

Θt+1 = Θt − μ
n

∑
i=1

∇(Xi, Θt)

 Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS ’17 (>2100 citations in 5 years)

$

Secure Aggregation (SA) in FL: 21

Parameter Server:

Θt

Θt Θt Θt∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

X2X1 X3

Magic, crypto box (SA):
n

∑
i=1

∇(Xi, Θt)

Θt+1 = Θt − μ
n

∑
i=1

∇(Xi, Θt)

SA+FL expected privacy:
% “Privacy by aggregation”:

Aggregating together a suitable
number of model updates smooths
out the information carried out by
individual contributions.

 Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS ’17 (>2100 citations in 5 years)

$

The security of Secure Aggregation:
(adversarial server)

22

Θt

Θt Θt Θt

X2X1 X3

PKI

SA’s Security definition:
Nothing is learned about the inputs apart from
what can be inferred from the final sum.

% SA is proven secure against a malicious server:
✦ that can collude with up to users

n
3 − 1

$

$

&

With the help of:

SA

 Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning” CCS ’17 (>2100 citations in 5 years)

23

Is Secure Aggregation
actually Secure?

Pasquini, Francati, and Ateniese“Eluding Secure Aggregation in
Federated via Model Inconsistency” CCS’22

Θt

The problem with SA+FL: 24

n

∑
i=1

∇(Xi, Θt)

∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

SA: '

The problem with SA+FL: 24

n

∑
i=1

∇(Xi, Θt)

∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

Θt Θt Θt

SA: '

The problem with SA+FL: 24

n

∑
i=1

∇(Xi, Θt)

∇(X1, Θt) ∇(X2, Θt) ∇(X3, Θt)

$

Θt Θt Θt

SA: '

Gradient Suppression attack : 25

Θt,

Θ̃ Θ̃ Θt

X2X1 X3

$

Attack setup:
1. The server selects a target user (all the other

users are non-targets).
2. The server distributes different parameters to

target and non-targets
• The target gets: (as in the honest

execution)
• The non-targets get a set of maliciously

crafted parameters

Θt

Θ̃

Θ̃

Magic, crypto box (SA):

TargetNon-targetNon-target

Model
inconsistency:

Gradient Suppression attack : 25

Θt,

Θ̃ Θ̃ Θt

X2X1 X3

$

Attack setup:
1. The server selects a target user (all the other

users are non-targets).
2. The server distributes different parameters to

target and non-targets
• The target gets: (as in the honest

execution)
• The non-targets get a set of maliciously

crafted parameters

Θt

Θ̃

Θ̃

Magic, crypto box (SA):

TargetNon-targetNon-target
 is created s.t.: Θ̃

∀X∈* ∇(X, Θ̃) = [0,…,0]

Model
inconsistency:

Gradient Suppression attack : 25

Θt,

Θ̃ Θ̃ Θt

X2X1 X3

$

Attack setup:
1. The server selects a target user (all the other

users are non-targets).
2. The server distributes different parameters to

target and non-targets
• The target gets: (as in the honest

execution)
• The non-targets get a set of maliciously

crafted parameters

Θt

Θ̃

Θ̃

Magic, crypto box (SA):

TargetNon-targetNon-target
 is created s.t.: Θ̃

∀X∈* ∇(X, Θ̃) = [0,…,0][0,…,0] ∇(X3, Θt)[0,…,0]

∇(X3, Θt)

∇(X3, Θt)[0,…,0] + [0,…,0]+

Model
inconsistency:

How to kill a neural net: 26

▪ The easiest way:
• Choose such that is a constant function:Θ̃ "(#, $~Θ(%))

 & ⊗ [0,0, 0 …, 0] = '
is constant with respect to

"(#, ')
Θ̃

∀x,y∈X ∇(X, Θ̃) = [0,…,0]

[0,0, 0 …, 0]

=

Gradient suppression is: 27

▪ Attack properties:
•It works even with millions of users (e.g., real-world cross-device FL)
•It is task/network-agnostic (it would work for any NN/task)
•It does not require any auxiliary information on users

▪ However:
•It is trivially detectable by aware non-target users

•We introduce a more sophisticated attack called “Canary Gradient Attack”:

Partial Gradient Suppression: 28

 : Θ̃ξ

:∇(X, Θ̃ξ)
[0, …, 0]

|ξ |
| Θ̃ξ |

= 2
3,439,332

= 5 ⋅ 10−7%

e.g., ratio of zeroed gradients for a ResNet18:

ξ ⊂ Θ̃ξ

X

Idea: we forge s.t. only a small subset of parameters gets zero-gradient:Θ̃ξ ξ

El
ud

in
g S

A
via

 m
od

el
in

co
ns

ist
en

cy
Canary-Gradient attack (setup): 29

·Θξ

Θ̃ξ Θ̃ξ
·Θξ

X2X1 X3

$

Attack setup:
✦ The non-targets get ; that is, gradient for is always

zero.

✦ The target gets ; that is, gradient for can be either
non-zero or zero conditionally to the input
used to compute the gradient by the target.
✦ E.g., Membership Inference Attack:

Θ̃ξ ξ

·Θξ ξ
X

xt ∈ X ?

Θ̃ξ

TargetNon-targetNon-target

SA

:∇(X, ·Θξ)
xt

El
ud

in
g S

A
via

 m
od

el
in

co
ns

ist
en

cy
Canary-Gradient attack (setup): 29

·Θξ

Θ̃ξ Θ̃ξ
·Θξ

X2X1 X3

$

Attack setup:
✦ The non-targets get ; that is, gradient for is always

zero.

✦ The target gets ; that is, gradient for can be either
non-zero or zero conditionally to the input
used to compute the gradient by the target.
✦ E.g., Membership Inference Attack:

Θ̃ξ ξ

·Θξ ξ
X

xt ∈ X ?

Θ̃ξ

TargetNon-targetNon-target

SA

:∇(X, ·Θξ)
xt

El
ud

in
g S

A
via

 m
od

el
in

co
ns

ist
en

cy
Canary-Gradient attack (setup): 29

·Θξ

Θ̃ξ Θ̃ξ
·Θξ

X2X1 X3

$

Attack setup:
✦ The non-targets get ; that is, gradient for is always

zero.

✦ The target gets ; that is, gradient for can be either
non-zero or zero conditionally to the input
used to compute the gradient by the target.
✦ E.g., Membership Inference Attack:

Θ̃ξ ξ

·Θξ ξ
X

xt ∈ X ?

Θ̃ξ

TargetNon-targetNon-target

SA

:∇(X, ·Θξ)
xt

El
ud

in
g S

A
via

 m
od

el
in

co
ns

ist
en

cy
Canary-Gradient attack (setup): 29

·Θξ

Θ̃ξ Θ̃ξ
·Θξ

X2X1 X3

$

Attack setup:
✦ The non-targets get ; that is, gradient for is always

zero.

✦ The target gets ; that is, gradient for can be either
non-zero or zero conditionally to the input
used to compute the gradient by the target.
✦ E.g., Membership Inference Attack:

Θ̃ξ ξ

·Θξ ξ
X

xt ∈ X ?

Θ̃ξ

TargetNon-targetNon-target

SA

:∇(X, ·Θξ)

MIAs via Canary-Gradient attack (aftermath): 30

$

Target:
∇(X3,

·Θξ)

Non-target:
∇(X2, Θ̃ξ)

Non-target:
∇(X1, Θ̃ξ)

SA:

n

∑
i=1

∇i

MIAs via Canary-Gradient attack (aftermath): 30

$

Target:
∇(X3,

·Θξ)

Non-target:
∇(X2, Θ̃ξ)

Non-target:
∇(X1, Θ̃ξ)

SA:

n

∑
i=1

∇i

MIAs via Canary-Gradient attack (aftermath): 30

$

Target:
∇(X3,

·Θξ)

Non-target:
∇(X2, Θ̃ξ)

Non-target:
∇(X1, Θ̃ξ)

SA:

n

∑
i=1

∇i

The attacker recovers the exact
gradient for the target, then:)

→ xt ∈ X3

→ xt ∉ X3

MIAs via Canary-Gradient attack on FedSGD: 31

New state-of-the-art MIA in FL (malicious server) that works under SA:
• Canary-Gradient injected in a ResNet18
• Only 2 parameters for :

• The scale and shift parameters of a single channel in a normalization layer
• i.e., of the total parameters in the network

)

5 ⋅ 10−7%

> 96 %

P2P Federated Learning

32

“Ok, it’s clear now; the problem is the server!” 33

We go fully-decentralized; Welcome to Decentralized Machine Learning:

$

Peer-to-Peer: Communication:

Lalitha et al “Peer-to-peer Federated Learning on Graphs” 2019
Guha Roy et al “BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learnig” 2019

….. and many others ….

“Ok, it’s clear now; the problem is the server!” 33

We go fully-decentralized; Welcome to Decentralized Machine Learning:

$

Peer-to-Peer: Communication:

Lalitha et al “Peer-to-peer Federated Learning on Graphs” 2019
Guha Roy et al “BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learnig” 2019

….. and many others ….

“Ok, it’s clear now; the problem is the server!” 33

We go fully-decentralized; Welcome to Decentralized Machine Learning:

$

Peer-to-Peer: Communication:

Lalitha et al “Peer-to-peer Federated Learning on Graphs” 2019
Guha Roy et al “BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learnig” 2019

….. and many others ….

[RelaySum for Decentralized Deep Learning on Heterogeneous Data, NeurIPS 2021]

[Decentralized Deep Learning With Arbitrary Communication Compression ICLR 2020]

[Towards Decentralized Deep Learning with Differential Privacy CLOUD 2019]

Does decentralization
make things better?

34

Pasquini, Raynal, and Troncoso“On the (In)security of Peer-to-Peer
Decentralized Machine Learning” IEEE S&P’23

Θt
0

Θt
2

Θt
1

Θt
3

$

▪(We perform a thorough security (privacy, mainly)
analysis of the protocol:
▪ Both Semi-honest (#) & Malicious security ($).

 (we introduce 6 new attacks)

Is it the case? 35

▪(We perform a thorough security (privacy, mainly)
analysis of the protocol:
▪ Both Semi-honest (#) & Malicious security ($).

 (we introduce 6 new attacks)
▪⚠ No! DL protocols inherently boost adversaries’

capabilities, resulting in less privacy for the users.

Is it the case? 35

▪(We perform a thorough security (privacy, mainly)
analysis of the protocol:
▪ Both Semi-honest (#) & Malicious security ($).

 (we introduce 6 new attacks)
▪⚠ No! DL protocols inherently boost adversaries’

capabilities, resulting in less privacy for the users.
▪*We characterize the main factors responsible for DL

insecurity:

Is it the case? 35

▪(We perform a thorough security (privacy, mainly)
analysis of the protocol:
▪ Both Semi-honest (#) & Malicious security ($).

 (we introduce 6 new attacks)
▪⚠ No! DL protocols inherently boost adversaries’

capabilities, resulting in less privacy for the users.
▪*We characterize the main factors responsible for DL

insecurity:

Is it the case? 35

Local Generalization+ ,Adv. System Knowledge

Decentralized Learning: 36

Θt
0

Θt
2

Θt
1

Θt
3

• Every user picks a set of neighbors users.
• Then, every node simultaneously:

Note: Every node may have a different set of parameters.

Decentralized Learning: 36

Θt
0

Θt
2

Θt
1

Θt
3

• Every user picks a set of neighbors users.
• Then, every node simultaneously:

Note: Every node may have a different set of parameters.

Decentralized Learning: 36

Θt
0

Θt
2

Θt
1

Θt
3

Θt+ 1
2

0 = Θt
0 − ∇(ξ, Θt

0)

• Every user picks a set of neighbors users.
• Then, every node simultaneously:

Note: Every node may have a different set of parameters.

Decentralized Learning: 36

Θt
0

Θt
2

Θt
1

Θt
3Θt+ 1

2
0

Θt+ 1
2

0

• Every user picks a set of neighbors users.
• Then, every node simultaneously:

You can also see it as a “Gossip protocol”:

Note: Every node may have a different set of parameters.

Decentralized Learning: 36

Θt
0

Θt
2

Θt
1

Θt
3

Θt+ 1
2

3
Θt+ 1

2
2

• Every user picks a set of neighbors users.
• Then, every node simultaneously:

You can also see it as a “Gossip protocol”:

Note: Every node may have a different set of parameters.

Decentralized Learning: 36

Θt
0

Θt
2

Θt
1

Θt
3

• Every user picks a set of neighbors users.
• Then, every node simultaneously:

You can also see it as a “Gossip protocol”:

Θt+ 1
2

0 +Θt+ 1
2

2 +Θt+ 1
2

3Θt+1
0

Update local parameters:

= ()/3

Local Generalization+

37

The Local Generalization phenomenon: 38

u1 u2 u3 u4

u1
u2

u3

u4

Federated Learning (FL): Decentralized Learning (DL):

▪ Every user shares the same model. ▪ Every user has different local parameters.

The Local Generalization phenomenon: 38

u1 u2 u3 u4

u1
u2

u3

u4

Federated Learning (FL): Decentralized Learning (DL):

▪ Every user shares the same model.

Θt

Θt

Θt Θt Θt

▪ Every user has different local parameters.

The Local Generalization phenomenon: 38

u1 u2 u3 u4

u1
u2

u3

u4

Federated Learning (FL): Decentralized Learning (DL):

Θt
1Θt

2

Θt
3

Θt
4

▪ Every user shares the same model.

Θt

Θt

Θt Θt Θt

▪ Every user has different local parameters.

▪Gossip communication induces uneven generalization:

Gossip communication and Generalization: 39

u1 u2 u3 u4

u4

Θt+ 1
2

1

Θt+1
4 =

X1 X2 X3 X4

▪Gossip communication induces uneven generalization:

Gossip communication and Generalization: 39

u1 u2 u3 u4

u4

Θt+ 1
2

1

Θt+1
4 =

X1 X2 X3 X4

▪Gossip communication induces uneven generalization:

Gossip communication and Generalization: 39

u1 u2 u3 u4

u4

Θt+ 1
2

1

Θt+1
4 =

X1 X2 X3 X4

▪Gossip communication induces uneven generalization:

Gossip communication and Generalization: 39

u1 u2 u3 u4

u4

Θt+ 1
2

1

Θt+1
4 =

X1 X2 X3 X4

▪Gossip communication induces uneven generalization:

Gossip communication and Generalization: 39

u1 u2 u3 u4

u4

Θt+ 1
2

1

Θt+1
4 =

X1 X2 X3 X4

▪Gossip communication induces uneven generalization:

Gossip communication and Generalization: 39

u1 u2 u3 u4

u4

Θt+ 1
2

1

Θt+1
4 =

X1 X2 X3 X4

Local Generalization: 40

u1 u2 u3 u4

Federated Learning (FL): Decentralized Learning (DL):

u1
u2

u3

u4

▪ Every node contributes equally to the
global model.

▪ Nodes’ local models are dominated by
their own local data.

Local Generalization: 40

u1 u2 u3 u4

Federated Learning (FL): Decentralized Learning (DL):

u1
u2

u3

u4

▪ Every node contributes equally to the
global model.

▪ Nodes’ local models are dominated by
their own local data.

$
$

Generalization is Privacy [MIA]: 41

Membership attack success:

u1 u2 u3 u4

u1
u2

u3

u4

-

-

▪ Attack on DL model update:

▪ Attack on FL model update:
(Global model)

$

$

-

-

H
ig

he
r m

ea
ns

 le
ss

 pr
iva

cy

Generalization is Privacy [MIA]: 41

Setup: Torus-36, CIFAR-100, ResNet-20

Membership attack success:

u1 u2 u3 u4

u1
u2

u3

u4

-

-

▪ Attack on DL model update:

▪ Attack on FL model update:
(Global model)

$

$

-

-

H
ig

he
r m

ea
ns

 le
ss

 pr
iva

cy

Reducing Local Generalization: 42

u1

u2

u3

u4
▪ Dense topologies reduce local generalization.

Reducing Local Generalization: 42

u1

u2

u3

u4
▪ Dense topologies reduce local generalization.

Reducing Local Generalization: 42

u1

u2

u3

u4
▪ Dense topologies reduce local generalization.
▪ When the topology is fully-connected:

▪ No more local generalization phenomenon!
(DL becomes equivalent to FL)

Reducing Local Generalization: 42

u1

u2

u3

u4
▪ Dense topologies reduce local generalization.
▪ When the topology is fully-connected:

▪ No more local generalization phenomenon!
(DL becomes equivalent to FL)

▪ ⚖ However:

▪ / Efficiency: Every node is now a
communication bottleneck.

▪ 0 Security: The attacker gains: “System
knowledge”.

Adversarial “System-Knowledge” :
43

$

Θt+1/2
2

Adversarial Knowledge:

▪ Every new neighbor grants the adversary with
a new and different view of the state of the
underlying system.

u1
u2

u3

u4

Adversarial “System-Knowledge” :
43

$

Θt+1/2
2

Θt+1/2
3

Adversarial Knowledge:

▪ Every new neighbor grants the adversary with
a new and different view of the state of the
underlying system.

u1
u2

u3

u4

Adversarial “System-Knowledge” :
43

$

Θt+1/2
2

Θt+1/2
3

Θt+1/2
4

Adversarial Knowledge:

▪ Every new neighbor grants the adversary with
a new and different view of the state of the
underlying system.

u1
u2

u3

u4

Adversarial “System-Knowledge” :
43

$

Θt+1/2
2

Θt+1/2
3

Θt+1/2
4

Adversarial Knowledge:

▪ Every new neighbor grants the adversary with
a new and different view of the state of the
underlying system.

▪ This provides novel and unexpected
capabilities to adversaries. Mainly:
▪ Disentangle users’ contributions and

artificially reduce generalization in the
system.

u1
u2

u3

u4

The Functional Marginalization attack: 44

u1

-

$$

-

u2

u3

u4

u1

Θt+ 1
2

u4

Locally, attacker-side:

The Functional Marginalization attack: 44

u1

-

$$

-

u2

u3

u4

u1 Θt+ 1
2

u1
Θt+ 1

2
u2

Θt+ 1
2

u3

Θt+ 1
2

u4

Locally, attacker-side:

The Functional Marginalization attack: 44

u1

-

$$

-

u2

u3

u4

u1 Θt+ 1
2

u1
Θt+ 1

2
u2

Θt+ 1
2

u3

Θt+ 1
2

u4

−Θt+ 1
2

u1

Locally, attacker-side:

The Functional Marginalization attack: 44

u1

-

$$

-

u2

u3

u4

u1 Θt+ 1
2

u1
Θt+ 1

2
u2

Θt+ 1
2

u3

Θt+ 1
2

u4

−Θt+ 1
2

u1

−Θt+ 1
2

u2

Locally, attacker-side:

The Functional Marginalization attack: 44

u1

-

$$

-

u2

u3

u4

u1 Θt+ 1
2

u1
Θt+ 1

2
u2

Θt+ 1
2

u3

Θt+ 1
2

u4

−Θt+ 1
2

u1

−Θt+ 1
2

u2

−Θt+ 1
2

u3

Locally, attacker-side:

MIAs on Functionally Marginalized models : 45

Torus-36, CIFAR-100, ResNet-20

-

·Θt
u4

= 4 ⋅ (Θt+ 1
2

u4
−

Θt+ 1
2u1

+ Θt+ 1
2u2

+ Θt+ 1
2u3

4)

Functionally Marginalized model:

MIAs on Functionally Marginalized models : 45

Torus-36, CIFAR-100, ResNet-20

-

·Θt
u4

= 4 ⋅ (Θt+ 1
2

u4
−

Θt+ 1
2u1

+ Θt+ 1
2u2

+ Θt+ 1
2u3

4)

Functionally Marginalized model:

The real implications of “System Knowledge”: 46

-

$

u1
u2

u3

u4

N(u) = u's neighbors

▪ When the attacker is connected to all
the target’s neighbors, i.e.,:

N(u4) ⊆ N(u1)

The real implications of “System Knowledge”: 46

-

u2

u3

u4

$

N(u) = u's neighbors

▪ It achieves the same adversarial
capabilities of a parameter server in FL:
▪1 Access individual gradients produced

by the targets(s) [semi-honest].
▪✍ Decide the local parameters of the

targets(s) [malicious].

▪ When the attacker is connected to all
the target’s neighbors, i.e.,:

N(u4) ⊆ N(u1)

47

&

A decentralized user becomes equivalent to a parameter server in FL for every node s.t.:

A V
N(V) ⊆ N(A)

(N(⋅) : set of neighbors)

$

47

&

A decentralized user becomes equivalent to a parameter server in FL for every node s.t.:

A V
N(V) ⊆ N(A)

(N(⋅) : set of neighbors)

$

47

&

A decentralized user becomes equivalent to a parameter server in FL for every node s.t.:

A V
N(V) ⊆ N(A)

(N(⋅) : set of neighbors)

$

▪Gradient recovery 1 :
▪ The attacker can retrieve the gradient of the

target(s) by observing two consecutive rounds:

Recover target(s)’ gradient: 48

-

u2

u3

u4

$
Θt+ 1

2
u2

Θt+ 1
2

u3

Θt+ 1
2

u4

▪Gradient recovery 1 :
▪ The attacker can retrieve the gradient of the

target(s) by observing two consecutive rounds:

Recover target(s)’ gradient: 48

-

u2

u3

u4

$
Θt+ 1

2
u2

Θt+ 1
2

u3

Θt+ 1
2

u4

▪Gradient recovery 1 :
▪ The attacker can retrieve the gradient of the

target(s) by observing two consecutive rounds:

Recover target(s)’ gradient: 48

-

u2

u3

u4

$
Θt+ 1

2
u2

Θt+ 1
2

u3

Θt+ 1
2

u4

1
η

(Θt+ 1
2

4 −
Θt− 1

2
1 + Θt− 1

2
2 + Θt− 1

2
3 + Θt− 1

2
4

4) =∇Θt
i
(xt)

▪Gradient recovery 1 :
▪ The attacker can retrieve the gradient of the

target(s) by observing two consecutive rounds:

Recover target(s)’ gradient: 48

-

u2

u3

u4

$
Θt+ 1

2
u2

Θt+ 1
2

u3

Θt+ 1
2

u4

1
η

(Θt+ 1
2

4 −
Θt− 1

2
1 + Θt− 1

2
2 + Θt− 1

2
3 + Θt− 1

2
4

4) =∇Θt
i
(xt)

Opt. based gradient inversion (passive) [CIFAR10]:

Deciding target(s)’ local parameters: 49

-

u2

u3

u4

$

Θt+ 1
2

u4

Θt+ 1
2

u2

Θt+ 1
2

u3

▪ State override attack ✍ :
▪ The attacker sets the target(s)’ parameters to a chosen

payload 3 by.
1. Waiting for neighbors model updates.
2. Creating an adversarial model update:

Deciding target(s)’ local parameters: 49

-

u2

u3

u4

$

▪ State override attack ✍ :
▪ The attacker sets the target(s)’ parameters to a chosen

payload 3 by.
1. Waiting for neighbors model updates.
2. Creating an adversarial model update:

Θ̃ = − (Θt+ 1
2

u2
+ Θt+ 1

2
u3

+ Θt+ 1
2

u4
)+3

Deciding target(s)’ local parameters: 49

-

u2

u3

u4

$

▪ State override attack ✍ :
▪ The attacker sets the target(s)’ parameters to a chosen

payload 3 by.
1. Waiting for neighbors model updates.
2. Creating an adversarial model update:

Θ̃ = − (Θt+ 1
2

u2
+ Θt+ 1

2
u3

+ Θt+ 1
2

u4
)+3

Deciding target(s)’ local parameters: 50

-

u2

u3

u4

$

Θ̃Θt+ 1
2

u2

Θt+ 1
2

u3

▪ State override attack ✍ :
▪ The attacker sets the target(s)’ parameters to a chosen

payload 3 by.
1. Waiting for neighbors model updates.
2. Creating an adversarial model update:

Θ̃ = − (Θt+ 1
2

u2
+ Θt+ 1

2
u3

+ Θt+ 1
2

u4
)+3

Deciding target(s)’ local parameters: 50

-

u2

u3

u4

$

=3Θt+1
4

▪ State override attack ✍ :
▪ The attacker sets the target(s)’ parameters to a chosen

payload 3 by.
1. Waiting for neighbors model updates.
2. Creating an adversarial model update:

Θ̃ = − (Θt+ 1
2

u2
+ Θt+ 1

2
u3

+ Θt+ 1
2

u4
)+3

Deciding target(s)’ local parameters: 50

-

u2

u3

u4

$

=3Θt+1
4

[1] Wen et al. “Fishing for user data in large-batch federated learning via gradient magnification” PMLR’22
[2] Boenisch et al “When the curious abandon honesty: Federated learning is not private” EuroS&P’23

▪ Payload (3): trap weights [1, 2]

▪ State override attack ✍ :
▪ The attacker sets the target(s)’ parameters to a chosen

payload 3 by.
1. Waiting for neighbors model updates.
2. Creating an adversarial model update:

Θ̃ = − (Θt+ 1
2

u2
+ Θt+ 1

2
u3

+ Θt+ 1
2

u4
)+3

Deciding target(s)’ local parameters: 50

-

u2

u3

u4

$

Verbatim copies of some of the batch data [STL10]:

=3Θt+1
4

[1] Wen et al. “Fishing for user data in large-batch federated learning via gradient magnification” PMLR’22
[2] Boenisch et al “When the curious abandon honesty: Federated learning is not private” EuroS&P’23

▪ Payload (3): trap weights [1, 2]

▪ State override attack ✍ :
▪ The attacker sets the target(s)’ parameters to a chosen

payload 3 by.
1. Waiting for neighbors model updates.
2. Creating an adversarial model update:

Θ̃ = − (Θt+ 1
2

u2
+ Θt+ 1

2
u3

+ Θt+ 1
2

u4
)+3

Decentralization; the aftermath: 51

Θt
0

Θt
2

Θt
1

Θt
3Θt

&

&
$

$ $

$

• A decentralized user can be as powerful as a federated server, but:

(a) In FL, there is a single and well-defined server:

4

4

4

(b) In DL, we have multiple, equivalently powerful,
(anonymous) users:

44

Decentralization; the aftermath: 51

Θt
0

Θt
2

Θt
1

Θt
3Θt

&

&
$

$ $

$

• A decentralized user can be as powerful as a federated server, but:

(a) In FL, there is a single and well-defined server:

4

4

4

(b) In DL, we have multiple, equivalently powerful,
(anonymous) users:

44

56

▪ Privacy offered by DL is a function of the
underlying topology. However:

Summing Up: 52

▪ Privacy offered by DL is a function of the
underlying topology. However:

▪ Any configuration seems to provide only
less privacy than FL.

Summing Up: 52

▪ Privacy offered by DL is a function of the
underlying topology. However:

▪ Any configuration seems to provide only
less privacy than FL.
▪ Every sparse topology induces local

generalization.

Summing Up: 52

▪ Privacy offered by DL is a function of the
underlying topology. However:

▪ Any configuration seems to provide only
less privacy than FL.
▪ Every sparse topology induces local

generalization.
▪ Dense topologies allow the adversary

to collect system knowledge and
become as powerful as a parameter
server in FL (what DL aimed to prevent).

Summing Up: 52

▪ Privacy offered by DL is a function of the
underlying topology. However:

▪ Any configuration seems to provide only
less privacy than FL.
▪ Every sparse topology induces local

generalization.
▪ Dense topologies allow the adversary

to collect system knowledge and
become as powerful as a parameter
server in FL (what DL aimed to prevent).
▪ Multiple super-nodes can now

exist simultaneously.

Summing Up: 52

Open problems:
53

▪ Main problem with DL is that
attackers can choose their
neighbors. Could we enforce
“secure topologies” without a
super-node?

Open problems:
53

▪ Main problem with DL is that
attackers can choose their
neighbors. Could we enforce
“secure topologies” without a
super-node?

Open problems:
53

▪ DL-aware Secure Aggregation
protocols are needed (in the paper, we
show that standard ones can be evaded).

Is there still time?

•[Yes] talk about Split Learning;

•[No] go to conclusions;

54

55

Different ingredients,
same result (a bit worse).

Pasquini, Ateniese, and Bernaschi “Unleashing the Tiger: Inference
Attacks on Split Learning” ACM CCS’21

Is Split Learning Private? No!

Split Learning 56

Split Learning is private ‘cause: 57

The problem with Split Learning: 58

The feature-space hijacking attack: 59

The feature-space hijacking attack: 60

61

62

63

64

65

66

Conclusions

67

What we should have learned: 68

What we should have learned: 68

▪ “CML is privacy preserving” has been mistakenly normalized by the scientific community:
▪ Despite the huge interest and research throughput:

▪ Current protocols are not a solution for your privacy issues.

What we should have learned: 68

▪ “CML is privacy preserving” has been mistakenly normalized by the scientific community:
▪ Despite the huge interest and research throughput:

▪ Current protocols are not a solution for your privacy issues.

▪ Usually, trying to patch something inherently insecure does not bring anywhere.
▪ Many existing techniques to improve CML’s privacy don't actually help.

What we should have learned: 68

▪ “CML is privacy preserving” has been mistakenly normalized by the scientific community:
▪ Despite the huge interest and research throughput:

▪ Current protocols are not a solution for your privacy issues.

▪ Usually, trying to patch something inherently insecure does not bring anywhere.
▪ Many existing techniques to improve CML’s privacy don't actually help.

▪ The only suitable direction to solve CML is to embrace formal security definitions:
▪ End-to-end cryptography (with sound threat models).
▪ At worst, weaker forms of privacy such as Differential Privacy (with sound threat models and met

assumptions).
▪ and accept that this comes with massive efficiency & utility costs.

What we should have learned: 68

▪ “CML is privacy preserving” has been mistakenly normalized by the scientific community:
▪ Despite the huge interest and research throughput:

▪ Current protocols are not a solution for your privacy issues.

▪ Usually, trying to patch something inherently insecure does not bring anywhere.
▪ Many existing techniques to improve CML’s privacy don't actually help.

▪ The only suitable direction to solve CML is to embrace formal security definitions:
▪ End-to-end cryptography (with sound threat models).
▪ At worst, weaker forms of privacy such as Differential Privacy (with sound threat models and met

assumptions).
▪ and accept that this comes with massive efficiency & utility costs.

What we should have learned: 68

▪ “CML is privacy preserving” has been mistakenly normalized by the scientific community:
▪ Despite the huge interest and research throughput:

▪ Current protocols are not a solution for your privacy issues.

▪ Usually, trying to patch something inherently insecure does not bring anywhere.
▪ Many existing techniques to improve CML’s privacy don't actually help.

▪ The only suitable direction to solve CML is to embrace formal security definitions:
▪ End-to-end cryptography (with sound threat models).
▪ At worst, weaker forms of privacy such as Differential Privacy (with sound threat models and met

assumptions).
▪ and accept that this comes with massive efficiency & utility costs.

▪ Everything outside this spectrum, unfortunately, offers only a “false sense of security”.

Time for questions.

69

All images in the slides have been generated by DALL-E

Differential privacy.

70

What’s next?

Or better, incorrect applications of DP:
• what happens when assumptions are not met.

